Возможности трехосевого акселерометра в диагностике расшатывания компонентов эндопротеза тазобедренного сустава.

Автор: Таштанов Байкожо Рустамович, врач-травматолог-ортопед, аспирант

Соавтор: Виталий Викторович Павлов Начальник научно-исследовательского отделения эндопротезирования и эндоскопической хирургии суставов, д.м.н., доцент

ФГБУ ННИИТО им.Я.Л.Цивьяна, Новосибирск

ПЯТЫЙ ЮБИЛЕЙНЫЙ ЕВРАЗИЙСКИЙ ОРТОПЕДИЧЕСКИЙ ФОРУМ EURASIAN ORTHOPEDIC FORUM

Рис. 12. Структура причин ревизионных вмешательств на основе записей регистра ЭП ТБС с 2007 по 2020 г.

Шубняков И.И., Риахи А., Денисов А.О., Корыткин А.А. и др. Основные тренды в эндопротезировании тазобедренного сустава на основании данных регистра артропластики НМИЦ ТО им. Р.Р. Вредена с 2007 по 2020 г.. Травматология и ортопедия России.

Российская база

 Основной причиной ревизионных ЭТБС является асептическое расшатывание компонентов эндопротеза, составляя 42,1%

 Через 7 лет после оперативного вмешательства ЭТБС доля асептического расшатывания и износа полиэтиленового вкладыща совокупно составляет до 80.13%

Актуальность

Иностранный регистр

- По данным Шведского регистра доля ревизионных оперативных вмешательств в следствии асептического расшатывания составляет 40%
- У наблюдений сроком в 10 лет, количество ревизий в связи с расшатыванием компонентов составляет более 60%

SWEDISH ARTHROPLASTY REGISTER 2022,

https://registercentrum.blob.core.windows.net/sar/r/SAR-Annual-Report-20

22_EN-HkgQE89Nus.pdf

Актуальность

4

Акустическая артрометрия

- Акустическая артрометрия метод диагностики состояния эндопротеза, основанный на непрерывной регистрации акустической эмиссии и анализе акустической сигнатуры сустава с применением трехосевого акселерометра.
- В отличие от существующих методов оценки состояния тотального эндопротеза тазобедренного сустава (рентгенография тазобедренного сустава, МСКТ), акустическая артрометрия (АА) позволяет пассивно выявлять как поверхностные, так и внутренние разрушения эндопротезов, цементной мантии, и вероятно окружающей костной ткани. [1]
- L.Кhokhlova так же отмечает, что исследования диагностики в современной ортопедии направлены на менее деструктивные для тканей и более экономически выгодные методы, а
 мименные «Акудетическая филофия» (АЭ) i 2 placements (THR) via acoustic emission (AE) Ch.Lee, L.Zhang, D. Morris, K.Y. Chenga, R.A.Ramachandran, M.Barba, D.Bijukumar, D.Ozevin, M.T. Mathew. J Mech Behav Biomed Mater. 2021 June ; 118: 104484. doi:10.1016/j.jmbbm.2021.104484.
- Assessment of Hip and Knee Joints and Implants Using Acoustic Emission Monitoring: A Scoping Review. L.Khokhlova , D.-S.Komaris , S.Tedesco, B.O'Flynn. IEEE Sensors Journal, VOL. 21, NO. 13,2021. https://doi.org/10.1109/JSEN.2020.3045203

Цель исследования: Улучшить результаты диагностики расшатывания компонентов эндопротеза тазобедренного сустава и износа полиэтиленового вкладыша путем разработки метода исследования на принципе неинвазивного и непрерывного мониторинга.

Задачи Исследования

- Изучить преимущества и недостатки существующих методов диагностики расшатывания и износа эндопротеза тазобедренного сустава, основанных на анализе акустической эмиссии эндопротеза тазобедренного сустава.
- 2. Разработать метод диагностики состояния эндопротеза тазобедренного сустава с последующим декодированием и интерпретацией полученных акустических эмиссионных сигналов.
- Определить характеристики акустической эмиссии эндопротеза тазобедренного сустава при рентгенологически определенной стабильности; с признаками расшатывания компонентов и/или износа полиэтиленового вкладыша.
- 4. Оценить эффективность разработанного метода в диагностике расшатывания и/или износе

Материалы и Методы

Этапы исследования:

 этап: Анализ существующих методов диагностики расшатывания и износа эндопротеза тазобедренного сустава, основанных на анализе акустической эмиссии эндопротеза тазобедренного сустава.

2-этап: Разработка устройства неинвазивной регистрации акустической эмиссии эндопротеза тазобедренного сустава и метода его применения с учетом недостатков и преимуществ существующих методов.

3-этап: Сбор и регистрация пациентов; регистрация акустических эмиссий на разработанном устройстве, декодирование и интерпретация акустической эмиссии.

Материалы и Методы

Группы пациентов

1 группа *контрольная	Пациенты после ТЭТБС, без рентгенологических признаков расшатывания.
2 группа	Пациенты госпитализированные по поводу износа полиэтиленового вкладыша.
3 группа	Пациенты госпитализированные по поводу асептического расшатывания компонентов эндопротеза тазобедренного сустава.

Статистический анализ

- Статистические расчёты проводились в IDE RStudio (версия 2024.12.0 Build 467) на языке R (версия 4.4.2 (2024-10-31 ucrt0)).
- Распределения показателей испытывались на согласие с законом нормального распределения критерием Шапиро-Уилка.
- Непрерывные показатели сравнивались использовался U-критерием Манна-Уитни, псевдомедианой разностей значений (ПМЕД) с построением 95% доверитольного интервала (95% ДИ).
- Категориальные показатели сравнивались точным критерием Фишера.
- Методами ROC-анализа для формул риска многофакторных моделей рассчитывался наилучший по индексу Юдена (Youden's index) порог риска и оценивались с 95%ДИ прогностические характеристики.
- Тестом Хосмера-Лемешова исследовали согласованность прогностических

- Определены характеристики устройства и механизм эксплуатации
- Определены точки фиксации
- Определены критерии оценки
- С результатами первого этапа (обзора литературы) можно ознакомиться по следующей ссылке:

ОБЗОРЫ / REVIEWS

Обзорная статья УДК 616.728.2-089.844-07 https://doi.org/10.17816/2311-2905-17552 CC BY

Возможности акустической артрометрии в эндопротезировании тазобедренного сустава: обзор литературы

Б.Р. Таштанов¹, М.А. Райфельд², В.Н. Васюков², В.В. Павлов¹, А.А. Корыткин¹

¹ ФГБУ «Новосибирский научно-исследовательский институт травматологии и ортопедии им. Я.Л. Цивьяна» Минздрава России, г. Новосибирск, Россия

² ФГБОУ ВО «Новосибирский государственный технический университет», г. Новосибирск, Россия

Схематическое изображение принципа работы акустической артрометрии:

- в результате деградации материала ацетабулярного компонента (полиэтилен, керамика) (А)
- и силового воздействия (нагрузка во время ходьбы) на головку бедренного компонента эндопротеза (В),
- возникают акустические волны напряжения (C),
- распространяющиеся до акустико-эмиссионного сенсора (D).
- Затем в сенсоре акустическая волна преобразуется в электрические сигналы и передается в устройство (Р),
- в котором записывается, хранится и при передаче на 10
 любой носитель отображается в виде графиков (Е)

11

Схематическое изображение преобразованного сигнала акустической эмиссии:

R (Rise Time) — интервал между первым превышением порога огибающей сигнала и ее максимумом;

D (Duration) — длительность или интервал между первым и последним пересечениями порога огибающей сигнала;

P(PeakAmplitude)—амплитудахарактеризующая величину дефекта;

- C (Counts) количество импульсов в регистрируемом сигнале;
- Hit группа импульсов акустической эмиссии.

Схематическое изображение устройства и точек фиксации:

Разработано программное обеспечение на базе MATLAB для декодирования и визуализации акустических сигнатур

© 1984-2015 The MathWorks, Inc. Protected by U.S and international patents. See mathworks.com/patents. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

📣 MathWorks

R2015**b**

 10×10^4

14

- Форма вершин импульсов в соответствии с состоянием эндопротеза.
- С результатами второго этапа можно ознакомиться по следующей ссылке:

Критерии оценки акустических сигнатур

Амплитуды Колебаний

 Компоненты без Rg признаков расшатывания: амплитуда ≥ 10

 С признаками Расшатывания: амплитуда ≤ 10

Критерии оценки акустических сигнатур

РЕАКЅ – раздвоение вершин колебаний, как признак износа полиэтиленового вкладыша (≥0.49...)

17

Критерии оценки акустических сигнатур

WIDTH – расширение колебаний, как признак расшатывания компонентов (≤500)

	Ср.возраст (мед [Q1; Q3] сред±со (МИН - МАКС))	ИМТ (МЕД [Q1; Q3] СРЕД±СО (МИН - МАКС))	Ср.сроки наблюдения _{СРЕД±} со (мин - макс))	Цем/Бесцем
1 группа (контроль) n=40	63.0 [57.0;66.5] 61.4 ± 9.99 (36.0 -85.0)	29.8 [26.2;33.4] 30.1 ± 5.89 (20.4 -45.7)	4.63 (0.7;15)	8/32
2 группа (износ пэт вкладыша) n=20	65.0 [55.0;72.0] 63.4 ± 9.19 (49.0 -75.0	31.6 [29.8;32.9] 31.8 ± 4.69 (24.4 -44.1)	12.08 (5;17)	2/18
3 группа (расшатывание комп.) n=40	64.0 [61.0;70.0] 63.9 ± 9.8 (37.0 -85.0)	27.9 [23.7;30.3] 27.4 ± 4.3 (16.4 -35.3)	8.34 (1.5;27)	10/30

1 группа (контрольн ая) n=40	13 (0.486) / 27 (0.492)	12 (800) / 28 (315)	7 (0.24) / 33 (0.012)	10.0 [8.2;11.5] 10.0 ± 2.11 (6.0 -14.0)
2 группа (износ пэт вкладыша) n=20	16 (0.486) / 4 (0.491)	12 (580) / 8 (379)	15 (0.23) / 5 (0.017)	10.0 [9.4;10.6] 9.9 ± 0.93 (8.0 -11.0)
3 группа (расшатыв ание комп.) n=40	28 (0.487) / 12 (0.492)	25 (1064) / 15 (331)	8 (0.23) / 32 (0.014)	8.5 [7.5;9.5] 8.7 ± 2.1 (5.5 -15.0)

Чувствительность и Специфичность (износ пары трения)

	Положительны (+) 4 показателя (n)	Отрицательны (-) 4 показателя (n)	Total
Test +	18	6	24
Test -	2	34	36
Total	20	40	60
		p-value	
РЕАК менее 0.49		p = 0.004*	
ASYMMETRY более 0.02		p = 0.002*	
WIDTH более 500		p = 0.229	
Амплитуда колебаний менее 9		p = 0.149	

ROC – кривая Автоматическая многофакторная оптимальная модель forward model износа пары трения у всех пациентов

Чувствительность и Специфичность (расшатывание компонентов)

	Положительны (+) 4 показателя (n)	Отрицательны (-) 4 показателя (n)	Total
Test +	32	14	46
Test -	8	26	34
Total	40	40	80
РЕАК менее 0.49		(p = 0.052)	
ASYMMETRY более 0.02		(p = 0.007*)	
WIDTH более 500		(p < 0.001*)	
Амплитуда колебаний менее 9		(p = 0.002*)	

ROC – кривая Автоматическая многофакторная оптимальная модель forward model

Чувствительность и Специфичность

	Износ пары трения Значение [95%ДИ]	Расшатывание Значение [95%ДИ]
Чувствительность Sensitivity	91.7% [61.5%; 99.8%]	79.5 % [64.7%; 90.2%]
Специфичность Specificity	84.6 % [69.5%; 94.1%]	65.8% [48.6%; 80.4%]
Положительная прогностическая ценность Positive predictive value	64.7% [38.3%; 85.8%]	72.9% [58.2%; 84.7%]
Отрицательное прогностическое значение Negative predictive value	97.1% [84.7%; 99.9%]	73.5% [55.6%; 87.1%]
Диагностическая точность Diagnostic accuracy (the correctly classified proportion)	86.3 % [73.7%; 94.3%]	73.2% [62.2%; 82.4%]

- Наибольшим количеством преимуществ, обладает устройство, работающее на основе трехосевого акселерометра без дополнительных источников вибрации.
- 2. Качество регистрируемых акустических эмиссий и амплитуда колебаний акустических сигнатур не коррелируют с индексом массы тела (ИМТ)
- Оценка амплитуды, ширины и симметричности колебаний являются наиболее информативными.

4.

5.

- Метод анализа акустической эмиссии демонстрирует: чувствительность 91.7% износ пэт. и 79.5% - расшат.; специфичность 84.6% - износ пэт. и 65.8% - расшат., что не исключает его практическую ценность в скрининговой диагностике расшатывания и/или износе компонентов эндопротеза.
- Предлагаемый метод диагностики представляет собой перспективное дополнение к рентгенологическим методам исследования в практике врачатравматолога-ортопеда.

Благодарю за внимание!

